8.1.

가

가

,

,

,

가

,

가

Strip

,

.

Guillor, Schlosser & Long(1979) . Goodman, Tayor & Brekke¹³³⁾ 7

•

. , Heuze Barbour¹⁴²⁾

•

(8.1).

.

•

Matsui & San¹⁷⁸⁾

,

Duncan-Chang

발달사 ²⁶⁰
조인토요소의

Name			Geometry		Ň	Rotational		Circin	Florid	
Reference Num Date		Plane	Axisym- metric	Three dimention	Thickness	Stiffness	Dilation	Softening	Flow	Quadratio
koodman et al.	(1968)	•			•					
fahtab et al	(0261)			٠			220.04			
leuze. et al.	(1261)	•			•			*		
leuze. et al.	(1261)	•			•		•	•		
it. john.	(1972)	•		•	•					
e Rouvray et al.	(1972)	•			•		•	•		
loodman et al.	(1972)	•			•		•	•		
haboussi et al.	(1973)	•	٠				•			
iale et al.	(1974)	•							٠	
lgo	(1975)	•			•					•
harma et al	(9261)	•								•
lilber et al.	(9261)	•			23				•	
bodman et al.	(1161)	•			•	•				
leuze	(61/61)	•			•	•	•			
Gurun	(1861)	•			•		•	•		
'an Dillen et al.	(1881)	•		•			•			
leuze et al.	(1985)		•		•		•			
「数号	(1982)			٠	•	1				
各別人	(1982)	•			•	•		•	•	
法本导	(1983)		•		•				•	

8.2

9 S

Normal stress

8.3.1

,

 $\begin{array}{cccc} 8.5 \\ 7 \end{array} \\ . \qquad du_r, \qquad dv_r \qquad u \quad v \end{array}$

$$du_{r} = \frac{u_{4} + u_{3} - u_{2} - u_{1}}{2}$$

$$dv_{r} = \frac{v_{4} + v_{3} - v_{2} - v_{1}}{2}$$
(8.1)

$$d\varepsilon = du_r/t, \qquad d\gamma = dv_r/t \quad 7$$
, t

.

matrix K (8.2)

$$K = \int_{v} B^{T} D_{ep} B d(vol)$$
(8.2)

8.5

,
$$D_{ep}$$
 - matrix

matrix K
$$K = t l B^{-1} D_{ep} B$$
 (*l*

- matrix D_e

•

f

$$D_e = \begin{bmatrix} G & 0\\ 0 & E \end{bmatrix}$$
(8.3)

 k_n, k_s

)

$$E = k_n t \quad , \quad G = k_s t \tag{8.4}$$

8.3.2 -Matsui & San(1989)

Coulomb

•

•

$$|\tau| = \sigma \tan \phi + c \tag{8.5}$$

$$f = \tau^2 - (\sigma \tan \phi + c)^2$$
(8.6)

$$\delta arepsilon_p$$

•

-

가

$$\delta_{ep} = \frac{\partial f}{\partial \sigma} \tag{8.7}$$

$$df = \frac{\partial f}{\partial \sigma} \, d\sigma = 0 \tag{8.8}$$
(8.6) (8.8)

$$df = \tau d\tau - (\sigma \tan \phi + c) \tan \phi d\sigma = 0$$
(8.9)

$$darepsilon$$
 $darepsilon_e$ $darepsilon_p$ $darepsilon_p$

.

$$d\varepsilon = d\varepsilon_e + d\varepsilon_p \tag{8.10}$$

$$\begin{pmatrix} d\gamma_e \\ d\varepsilon_e \end{pmatrix} = \begin{bmatrix} 1/G & 0 \\ 0 & 1/E \end{bmatrix} \begin{pmatrix} dz \\ d\sigma \end{pmatrix}$$
(8.11)

,

.

,

$$\frac{\partial f}{\partial \sigma} = \left[2\tau - 2s \right]^T \tag{8.12}$$

,
$$s = (\sigma \tan \phi + c) \tan \phi$$

(8.10) (8.6), (8.11), (8.12)

$$\begin{pmatrix} d\gamma \\ d\varepsilon \end{pmatrix} = \begin{bmatrix} 1/G & 0 \\ 0 & 1/E \end{bmatrix} \begin{pmatrix} d\tau \\ d\sigma \end{pmatrix} + \begin{pmatrix} 2\tau \\ 2s \end{pmatrix}$$
(8.13)

$$\begin{pmatrix} d\mathcal{I} \\ d\mathcal{I} \end{pmatrix} = \begin{bmatrix} G & 0 \\ 0 & E \end{bmatrix} \begin{pmatrix} d\mathcal{I} \\ d\mathcal{I} \end{pmatrix} + \begin{pmatrix} 2\mathcal{I} \\ 2s \end{pmatrix}$$
 (8.14)

$$= \frac{\tau G d\gamma \cdot sE d\varepsilon}{2\tau^2 G + 2s^2 E}$$
(8.15)

$$D_{ep} = \begin{bmatrix} G & 0 \\ 0 & \tau \end{bmatrix} \cdot \begin{bmatrix} D_{11} & D_{12} \\ D_{21} & D_{22} \end{bmatrix}$$

$$, D_{11} = \frac{\tau^2 G}{\tau^2 G + s^2 E}$$

$$D_{12} = D_{21} = \frac{\tau G s}{\tau^2 G + s^2 E}$$

$$D_{11} = \frac{s^2 G}{\tau^2 G + s^2 E}$$
(8.16)

8.3.3

8.6

.

7!
4.0 × 10⁵ t/m², 0.3,
1.5 × 10⁵ t/m² 7!
c,
$$\phi$$
 1.0t/m²,30 °
8.7
8.7
1 4
8.8
1 4

178) •

•

•

•

1

1

4

8.10

178)

8.11

8.4

가

가

.

8.4.1

 71
 1963 Kondner
 Duncan &

 Chang (1970)
 .¹¹⁵⁾ Kondner (1963)
 (8.17)

$$\varepsilon = \frac{\sigma_1 - \sigma_3}{E_i \left[1 - \frac{R_f (\sigma_1 - \sigma_3)}{(\sigma_1 - \sigma_3)_f}\right]}$$
(8.17)

$$(\sigma_1 - \sigma_3) :$$

$$(\sigma_1 - \sigma_3)_f :$$

$$R_f :$$

$$\varepsilon :$$

$$E_i :$$

(8.17) - 8.13 . Duncan and Chang(1970) E_i (8.18) .

.

$$E_{i} = KP_{a} \left(\frac{\sigma_{3}}{P_{a}}\right)^{n}$$

$$K : \qquad (modulus number), P_{a} : , \qquad (8.18)$$

 σ_3 :, n:

(8.19) .

$$R_f = \frac{(\sigma_1 - \sigma_3)_f}{(\sigma_1 - \sigma_3)_{ult}}$$
(8.19)

•

 R_f : failure ratio $(\sigma_1 - \sigma_3)_f$:

.

(8.17) Mohr-Coulomb (8.20)

$$\varepsilon = \frac{\sigma_1 - \sigma_3}{E_i \left[1 - \frac{R_f (\sigma_1 - \sigma_3)(1 - \sin \phi)}{2c \cdot \cos \phi + 2\sigma_3 \cdot \sin \phi}\right]}$$
(8.20)

c:
$$\phi$$
: .
 E_t 8.21

$$E_{t} = \left\{ \frac{R_{f}(1 - \sin\phi)(\sigma_{1} - \sigma_{3})}{2c \cdot \cos\phi + 2\sigma_{3} \cdot \sin\phi} \right\}^{2} KP_{a} \left(\frac{\sigma_{3}}{P_{a}}\right)^{n}$$
(8.21)

(unloading) (reloading)
$$E_{ur}$$
 (8.22) .

$$E_{ur} = K_{ur} P_a \left(\frac{\sigma}{P_a}\right)^n \tag{8.22}$$

. Duncan and Chang(1970)

가 B(

, bulk

(5

8.5.1

)

5 가 가 .

가 가

•

$E(t/m^2)$	100	250	1000	2.1×10^{7}	2.1×10^{7}
$I(m^4)$	-	-	-	20400×10^{-8}	-
γ (t/m ³)	1.85	1.90	2.0	-	-
ν	0.3	0.3	0.3	-	-
ϕ (DEG)	25.5	35	40	-	-
$c(t/m^2)$	1.35	1.5	2.0	-	-
Ko	0.43	0.33	0.25	-	-
$A(t/m^2)$	-	-	-	119.8 × 10 ⁻⁴	6.334 × 10 ⁻⁴

8.5.2

8.5.3

2

가

.(8.16)

8.6

•

,

,

Matsui & San

3 2,4 3% 가

•

가

,

,

•

,

•

.

- 242 -