Computer Programs to Analyze Stability of Slopes Containing Piles

¹⁾, Won-Pyo Hong

1)

, Professor, Dept. of Civil & Environmental Engineering,

Chung-Ang Univ.

SYNOPSIS : Piles have been used as one of the most common measures to ensure the stability of unstable slopes. Considering the arching effect in soil between piles, a technique was presented to analyze the stability of slopes containing piles. It is emphasized in the analysis that both the slope-stability and the pile-stability should be ensured at the same time to capture the whole stability of slopes containing piles. A design method was estabilished in 1981 by the author on the basis of the analysis method of the slope containing piles. Computer programs, SPILE and CHAMP, were made to analyze and design the slope containing piles. SPILE can be used to design the stabilizing piles, while CHAMP can be used to analyze the behavior of foundation piles for bridge abutments. The limit equilibrium method for infinite slope is applied in SPILE, while the limit equilibrium method proposed by Fellenius is applied in CHAMP.

A new computer program SLOPILE is presented in this study to analyze the stability of slopes containing piles. The analytical techniques applied in SPILE and CHAMP are also applied in SLOPILE, so that wide application could be provided. Therefore, SLOPILE can calculate the slope stability for both planar failure surfaces in infinite slopes and arc failure surfaces based on Fellenius and Bishop simplified methods. OS system combined Dos and CAD, which is applied in SPILE and CHAMP, is improved to Windows version. SLOPILE can be used to analyze and design piles installed in not only fill slopes but also cut slopes. SLOPILE can be also used to analyze the behavior of foundation piles for bridge abutments constructed on soft grounds.

Key words : slope stability, stabilizing pile, lateral earth pressure, computer program, slope stability analysis.

2.1

(Passive pile)

(, 1983).

가

가 가

(福本, 1977; Ito, Matsui and Hong, 1981, 1982).

가.

)

(福本, 1977).

(, 1982, 1983, 1984a, 1984b, 1984c; Matsui, Hong and Ito, 1982). , (Ito, Matsui and Hong, 1981, 1982) (Hong, 1986).

가	(2 , 1987;	4 , 1987;	3 , 1989).
2.1				H-300 × 300
1.5m			2 3m	,

2.2

(

. ()

가 . . , .

2.2.2

2 . ,

가 . , 가

7⊦ . 3.

27t , . 3.1

2 (() 3.1(a) . 3.1(b) 7

H 가

(b) Slope-stability

가

3.1 가 가 가

3.1(a) CADBC F_{d} $F_{\rm r}$. , CAD F_{rs} . AB $F_{\tt rp}$ D , A . 가 (3.1(b) ABCA ABDA)가 가 가 AD(Fs)slope

$$(F_{s})_{slope} = \frac{F_{r}}{F_{d}} = \frac{F_{rs} + F_{rp}}{F_{d}}$$
 (3.1)

$$(F_{s})_{slope} = \frac{M_{r}}{M_{d}} = \frac{M_{rs} + M_{rp}}{M_{d}}$$
 (3.2)

 $M_{\rm r}$, Ma , Mrs DAC Frs, Fd , M_{rp} AB . (3.1) (3.2)

Mrs, Md

,

, Frs Mrs

.

•

3.2

3.1(a)
$$P_{mi}(\overline{z})$$

. ,

•

•

$$E_{p}I_{p} \frac{d^{4}y_{1i}}{d\overline{z}^{4}} = P_{mi}(\overline{z}) - E_{S1i}y_{1i} \quad (-H \leq \overline{z} \leq 0)$$

$$E_{p}I_{p} \frac{d^{4}y_{2i}}{d\overline{z}^{4}} = -E_{S2i}y_{2i} \quad (-\overline{z} > 0)$$
(3.3)

$$\overline{z} = (z - H), i$$
 z , H
H' , L_P , y_{1i} y_{2i}
, E_pI_p , E_{S1i} E_{S2i}
. P 1
z $f_{1i+}f_{2i}\overline{z}$. (3.3)

$$y_{1i} = e^{-\beta_{1i}\overline{z}} (a_{1i}\cos\beta_{1i}\overline{z} + a_{2i}\sin\beta_{1i}\overline{z}) + e^{\beta_{1i}\overline{z}} (a_{3i}\cos\beta_{1i}\overline{z} + a_{4i}\sin\beta_{1i}\overline{z}) + (f_{1i} + f_{2i}\overline{z})E_{S1i}$$

$$y_{2i} = e^{-\beta_{2i}\overline{z}} (b_{1i}\cos\beta_{2i}\overline{z} + b_{2i}\sin\beta_{2i}\overline{z}) + e^{\beta_{2i}\overline{z}} (b_{3i}\cos\beta_{2i}\overline{z} + b_{4i}\sin\beta_{2i}\overline{z})$$
(3.4)

 $a_{1i}, a_{2i}, a_{3i}, a_{4i}, b_{1i}, b_{2i}, b_{3i}$ b_{4i}

.

. ,

.

$$(7^{\dagger}), (7^{\dagger}), (7^{\dagger}), (7^{\dagger}), (7^{\dagger}) (7^{\dagger})$$

$$(7^{\dagger}), \beta_{1i} \sqrt[4]{4E_{p}I_{p}} \beta_{2i} \sqrt[4]{4E_{p}I_{p}} .$$

 $(F_{S})_{pile}$ σ_{allow}

•

.

.

 $\sigma_{\rm max}$

$$(F_{\rm S})_{\rm pile} = \sigma_{\rm allow} / \sigma_{\rm max}$$
(3.5)

가 .

$$(\mathbf{F}_{\mathrm{S}})_{\mathrm{pile}} = \tau_{\mathrm{allow}} / \tau_{\mathrm{max}}$$
(3.6)

1 3.1(a) , 3.2

3.2

)

N
$$_{\phi} = \tan^2(-/4 + \phi/2)$$

0 (3.7) c = 0 $p(z)/d \sigma_H$. 0 $K_{p1} K_{p2}$?

$$K_{p1} = \frac{1}{1 - D_2/D_1} \left(3 \ln \frac{D_1}{D_2} + \frac{D_1 - D_2}{D_2} \tan \frac{\phi}{8} \right)$$
(3.9a)

$$K_{p2} = 1$$
 (3.9b)

가

 $p_{m}(z) = \alpha_{m} \times p(z)$

 $7 \qquad \qquad \alpha_{\rm m} (0 < \alpha_{\rm m} < 1)$

(3.10)

,

,

(3.10) .

가 *α*_m 가 . 1 α_{m} •

3.4 SPILE

SPILE (Stabilizing Piles to Control Landslide) : 94-01-12-2970). (SPILE

()

가

3.4 SPILE

가 (), ·

,

.

4. 4.1 .

가 , , , , 3.4 SPILE . , , , , 가 . .

가 가 가 가 .

. , , , , 47ŀ . capping .

3.4 feed back , , , , , . . .

1.1 1.3 . CAD GRAPHIC .

, , 가 . ,

가 . 가 .

4.3 CHAMP

CHAMP(<u>CH</u>UNG-ANG <u>A</u>BUT<u>M</u>ENT <u>P</u>ILES)

. , (Landing pier)

4.2 CHAMP

(

.

5. Windows SLOPILE 5.1 SLOPILE

CHAMP SPILE SLOPILE . . (Fellenius , Bishop) 가 SLOPILE 5.1 . 가 가 가 가 ,

・ ア ア ア 、 ア 、 ア 、 ア

, · · , · ,

가

가

.

5.1 SLOPILE

·

가 가 가 .

5.2 SLOPILE

SLOPILE	Windows	Windows	,
(M	ultitasking) ,	,	
Dos	CHAMP, SPILE	SLOPILE	

5.2 5.12 SLOPILE .

, . .

(1) :

도명한지 32 프로 도명 22 프 다음 제품 				JOB TITLE SPILE PROGRAM TEST20 ANALYSIS METHOD BISHOP SIMPLIFED METH	AT IOD
22 23위 22 - 22 12월 24 12월 25 23 25 23 25 24 25 25 25 25 25 25 25 25 25 25 25 25 25				SPLE PROGRAM TEST21 ANALYSIS METHOD BISHOP SIMPLIFIED METH	IOD
AE+4 5834 DAMS V8524 V8524				ANALYSIS METHOD	100
도정철수 다일에진 생명구 2 전 상대하는				BISHOP SIMPLIFIED MET	100
19978 19978 1911-				THE REPORT OF A DESCRIPTION OF A DESCRIP	
명양구성 40차 주				THE FACTORS OF SAF	ETY
10:0-4				WITHOUT PILES :	1,50
the real Point				CRITICAL CIRCLE CENTE	A
187-44			7 X	OX (56.25 OY	1 412
21	(\$10)	1	n Mai Emi	RADIOUS ;	1:40
				WITH FILES (1.40
	[200+The.m.16	a 체식단면(철도).dat	· · · · · · · · · · · · · · · · · · ·	CRITICAL CIRCLE CENTE	H .
] 챔프지하수위.tat	· · · · · · · · · · · · · · · · · · ·	┫해석단면회를.dat	BADIOUS :	1 45.2
] 접 초시하수위 바람없 을, d xt 이상 성도 dat	에 해석단면.dat	alhitle DAT	DEFLECTION OF PILE	
) 78 46.dat	· 해석단면6.dat	MCHAMP.dst	PLE TOP :	1.50
	L	-	1	PILE MAX :	1.50
Di	월 (N플(N): [해석탄면(영5	ε), dat	\$27KQ3		
The	a et al tribert and at		- 21A		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	a a note i trans			b.	

, ,

5.3

:

(3)

,

:

(5)

3200.0											1081	ITLE	
	Soil Pro	ornies										PHOGHAM TESTS	LUA.I
14E	- 각지수	의 통성치	물 입력하나()도									TSIS METHOD	
	「「ありつ	「日本日	1112014132	522	161 I	FI 2	10120	고 있다. 위 J H A	00 - 20 -	HB I		ACTORS OF ST	NOU -
15	1	토사승	25.00	0.00	91.00	175.00	1,90	1.90	0.00	0.00	Ē	IT PLES !	1,100
T8	2	통화암	0,00	7,08	105,00	280,00	1,80	1,85	0,00	0,00	1	AL CIRCLE CENT	ER
012	3	면압송	45.00	0.00	700.00	100.00	2.00	2.10	0.00	0.00		0.00	OV: 81.0
24 1											1	18	47.5
												LES :	1.134
	-										18	AL OROLE CENT	ER
												5.00	0Y: 93.0
	-										1	us	43.0
	-								_			CTION OF PILE	0.0
	att		du id								ċ.	PILE TOP -	0.44
	Looken												
	지수는	12	7 6 9	1	바보마한지	1 8	1 194	HAHWH	1	7			
	2	1 i	32 2	-	0.00	1	7.00	0.0	F	1			
	0.394	살부 탄설7	비수 105	.00	단위공단	王朝日	HEE	HB:Hs/H	0	17			
	10098	바로 탄성기	배수 280	.00	1.80		1.85	0.00	-	101			
		लामध्य क	CAU 236	计三方点	門立				-	12			
						-	100		-	_			

,

,

,

Sec. 1											SPILE PRO	GRAM TES	T2.DAT
	📾 Pile Pro	perfies									a de la	METHOR	1.2
4	• 田嶽則 1	#한 제왕품	입력하시S	20								LEED N	ETHOD
INC.	말쯱번호	적황	간쪽비	탄성계수	- 판성도번트	단면계수	단면척	문입길이	설치위치	利遵守	지출번호 -	IRS OF S	AFETY
2.05	1	0.42	0.65	21000000.0	0.00016800	0.0012709	0.01103000	2.00	56.30	3	1.2.3.	ES :	1,104
12	2	0.42	0.65	121000000.0	0.00016600	0.0012700	daran 109000	2.00	56.30	8	1.2.3	ROLE CE	NTER
1.000	3	0,42	0,65	21000000,0	0 0, 00016600	0,0012700	0 0, 01 108000	2,00	56, 30	3	1,2,3,		OY : 88
24J									-				47.
												1	1,135
	-	-		-					-	-	_	ROLE OF	NTER
	-						_		-	-	_		OV: 93
	-									-			43
	-									-		OF PILE	
	and in									-	×	PILE TOP	r 0.4
												PILE MA	(). Q4
	WE PI H		1 60	262840	1 6143	2 20	TONE	CIDINA A	CID	21	8.71		
	12		U	0.95	1210000	n hinni	118800 10	huknuu	TT. DUDS		0.75		
	1 20.01 201	1	101-H 1	ALL DE TE MARK	I ALM NEW	and Con	6.212(0)	EMERA	1 MER	1.1	42		
	200		20 17	03654	100000	110 1	SHIRN I	0	L 2	CE2	0101		
	100	ABPEDIA	C THAT IS	the THE A	1 3	11.0	ame 10	23		-	前 公		
	C	TOXER	AND A D	급 개봉우	1.	1_0	30.4 L				114		

:,,,,

(7)

A VERSINGEEDA - Mainfami Tinano, Anvi, Novel, Anton, M. Casha	
	SLOPILE Vor2.0
2+# (141	SPILE PROGRAM TEST2.DAT
TIGTW	ANALYSIS METHOD
CARA	RISHOP SIMPLIFIED METHOD
Utili // Es	WTLOUT PLES 1 1 1000
[1] (1008)	COTICAL CIDOLE CENTER
State	OX: 40.00 OV: 88.00
지하수의 외감압구설 🗶	B400003 47.55
X A Y A	WTH PE ES : 1 13459
원합당 첫 수 5 5 -	CRITICAL CIECUE CENTER
응혈말 관 곡 500 5.00	0X:55.00 0Y: 93.00
용업을 시작화표 4100 108,00	R40/008 43.01
8399 853H 65.00 83.00	DEFLECTION OF PILE
사 면시작좌표 0.00 월 면 수	PILE TOP : 0.443
小 日 音量改善 [100,00] 50	PILE MAX: 0.443
SLOPE STABILITY ANALYSIS	

: ,

(8)

(9)

5.9

, Fellenius , Bishop : 금 사용양공성색포로그램 - (MainForm) 등] 미역(단) 의학(마) 왕집(단) 서석(단) 학가(만) 할 도움방법) _10 ×
 Image:
 Image: SLOPILE Ver2.0 JOB TITLE SPILE PROGRAM TEST2.DAT NALYSIS METHOD BISHOP SIMPLIFIED METHOD THE FACTORS OF SAFETY WITHOUT PILLES : 1.10408 CRITICAL CIRCLE CENTER 상재하운 刀하수위 OX:40.00 OY : BB. RADIOUS 47.55 WITH PILES 1,13449 CRITICAL CIRCLE CENTER OX:05.00 RADIOUS OY : 98.00 43,0 DEFLECTION OF PILE PILE TOP : PILE MAX : 0.443 SLOPE STABILITY ANALYSIS

5.11

:

(11)

6. SLOPILE										
6.1										
6.1.1										
6.1										
가										
		6.1						20m		
	6m	가	,							
6.1									2	7°,
		1.8 /	t/m^{3}	1.9 t/m ³						
,		25°,						1.7 t/m^3	1.8 t/m^3	,
		フト 2.5 t/	m^2	,					1.65 t/m^3	1.75
t/m^{3} .							35 °			2.0
t/m^{3} ,		2.1 t/m^3								
									가	
가		가				가				
				가		,			(Fellen	ius
Bishop)	•								
	Н-	(H - 300 × 300 :	x 10 x	: 15)						
	420m m									
1.25m		$D_2/2$	D_1	0.65	•					

•

1)
2) H-Pile
3) H-Pile
4)
5)
$$E_s$$

 $E_{s1} = 91 t'm^2$
 $37.5 t'm^2 (= 15c_u) = 100 t'm^2 (= 40c_u)$
 $350 t'm^2$
6.1.2
1)
6.2 7^{1}
 E_{s1}, E_{s2}
 E_{s1}, E_{s2}
 $E_{s1} = E_{s2}$
 $E_{s1} = E_{s2}$
 $E_{s1} = 2$
 E_{s1}

•

 E_{s1}

가

	(m)		(m)	(m)		(m)			
(cm)	0	19.131	0	0	0	24.947	0	0	
(cm)	0	19.131	13	9.043	0	24.947	14	4.9	
(t · m)	0	17.78	4	17.78	7	17.78	0	17.78	
(t/m ²)	6	11.19	21	6.9	6	6.877	0	6.259	

(c)

 t/m^2 (= 15 c_u) 280 t/m^2 (= 40 c_u).

.

700 t/m²

6.2.2 1) 6.11 가 가 가 1.65 1.95 가 . 가 가 Fellenius 1.15 1.45, Bishop , 가 1.2 1.5 가 , 0.5 6.11 E_{s2} E_{s1} , 가 가 1.64 1.54 가

6.15

	,	가				$H_{w}/2$	H 1		가	0
	6.15									H_w/H
가 0		가		1.54, Fel	leniu s	Н	1.10, Bis [_w /H가 1	hop		1.15
				, Feller	nius	, Bishop			0.73,	0.55, 0.48
,	,	H _w /H	1.1 가	0.4			H_w/H	가	0.7	·
Bi	shop		Fellenius	Bish Fellenius	юр			71		H _w /H가 0.6
DI	snop			가 가 가				~1		
6.2. 1)	3									
가	가 0.6	6.16	·		가		가			0.2
	6.17			E _{s1}	0, 9	91, 175				
				가						

フト 0/175	5	13.2cm	
가 91/175		5m	6.6cm
	フト 175/175		5m
4.8cm			

2)

•

6.18

가, 4가

,

,

6.2

.

	(m)		(m)		(m)		(m)		
(cm)	0	5.878	0	0	0	3.86	0	0	
(cm)	4	6.648	5	4.198	4	5.957	6	1.912	
(t · m)	5	17.78	5	17.78	5	17.78	0	17.78	
(t/m^2)	12	8.354	12	5.771	12	7.596	0	7.836	

가

7.

, CHAMP SPILE , 7, SLOPILE Bishop 7, . , Dos CAD OS Windows SLOPILE

가 가 , , ,

.

, (1987), 1. , , (1989), 2. , , 3. (1982), " ", , 2 , 1 , pp.45 52. 4. (1983), " , 3 , 3 , pp.63 69. ", 5. (1983), " , 31 , 5 , pp.32 36. 6. 洪元杓(1984a), "側方變形地盤 作用 土壓",大韓土木學會論文集,第4卷,第1號, pp.59 68. 7. 洪元杓(1984b), "受動作用側方土壓"大韓土木學會論文集, 第4卷, 第2號, pp. 77—88.

()

 8. 洪元杓(1984c), "側方變形地盤 圓形 作用 土壓 算定", 中央大學校論文集, 27, , pp.319 328.
 9. , , (1987), , (1987), ,

10. , , , (1991), "", , 7 , 2 , pp.6 7 79.

- 11. 福本安正(1977), 地すべり調査報告書 地すべり工法(抗打)調査-, 新渇縣農林部治山課.
- 12. Bowles, J. E.(1982), Foundation Analysis and Design, 3rd Ed., McGraw-Hill, Tokyo, pp.516 547.
- Hong, W. P.(1986), "Design Method of Piles to Stabilize Landslides", Proc., Int. Symp. on Env. Geo, Allentown, PA. pp.441 453.
- 14. Ito, T., Matsui, T. and Hong, W. P.(1981), "Design Method for Stabilizing Piles against Landslide-One Row of Piles", Soil and Foundations, JSSMFE, Vol.21, No.1, pp.21 37.
- Ito, T., Matsui, T. and Hong, W. P.(1982), "Extended Design Method for Multi-Row Stabilizing Piles against Landslides", Soil and Foundations, JSSMFE, Vol.22, No.1, pp.1 13.
- 16. Marche, R. & Lacroix, Y.(1972), "Stabilite des Culees de Pomts Establies sur de Pieux Traversant une Couche Molle", Can. Geot. Jour., Vol.9, No.1, pp.1 24.
- 17. Matsui, T., Hong, W. P. and Ito, T.(1982), "Earth Pressures on Piles in a Row due to Lateral Soil Movement", Soil and Foundations, JSSMFE, Vol.22, No.2, pp.71 81.
- Poulos, H. G.(1971), "Behavior of laterally loaded piles ; -single piles", ASCE, Vol.97, No.SM5, pp.711 731.