

6.1

,

25°,

.

1.8 t/m^3 1.85 t/m^3 , 45 °

		2.0 t/m^3 ,	2.1 t/m^3		
		1			
	20	m 1			
H - Pile (H - 300X3	00X10X15)				420mm
	2.0m				
1.25m		D_2/D_1	0.65		
1) H-Pile	2.1	$1 \times 10^6 \ kg/\ cm^2$			
2) H-Pile			1400 kg/	<i>cm</i> ² 800	kg/cm^2
3)					
4)	E _s				<i>E</i> _{s1} 91
t/m^2					
			$105 t/m^2$ ($= 15 c_u$)	280 t/m^2
$(=40c_{u})$				700	t/m^2

6.2.1

March & Lacroix Poulos

6.2.2

.

•

6.2.3

6.2.4

가

,

 H_w/H $H_w/H = 1$.

 H_w/H 가 0.7

• 1.10

Fellenius

1.54,

 H_w/H 가 0.4

가

•

가

Fellenius Bishop *H_w/H*가 0.6 Bishop

가

Bishop

Fellenius

Numerical Problem

,

Fellenius

Bishop

Fellenius

가

가

,

,

•

가

가

가

•

()

6.10

(FELLENIUS METHOD)

6.3.1

0.0

6.11

6.12

*E*_{s1} 0, 91, 175

가 0/175

13.315 (13.2)cm))

•

.

가 91/175 .

5m

6.602(6.648)cm

가 175/1759

5m

.

4.774(4.786)cm

6.3.2

•

6.13

•

,

,

가

4가

가

•

,

6.1 .

6.1

(cm)	0	5.878	0	0	0	3.86	0	0
(cm)	4	6.648	5	4.198	4	5.957	6	1.912
(t · m)	5	17.78	5	17.78	5	17.78	0	17.78
(t/m ²)	12	8.354	12	5.771	12	7.596	0	7.836

6.13(c)

,

,

5m

6.13(d)

, , ,

.

.

12m

.

.

가

가

.

•

•

•

•

.

,

,

,

.

,

Tie rod, Anchor

.

. 가

.

Back

, ,

6.5

•

,

Feed

,

•

,

•

.

,

.

, 가 가

,

. 가

,

,

 D_2/D_1 ,

,

- 119 -